Designing a Construct of Chimeric Multi-Epitopes Protein for Contraceptive Vaccine in Mice: An Immunoinformatics and In Silico Study

Authors

  • Ali Asghar Karkhaneh Department of Systems Biotechnology, Faculty of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
  • Behnam Mortazavi Department of Animal Biotechnology, Faculty of Agriculture Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
  • Farid Heidari Department of Animal Biotechnology, Faculty of Agriculture Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
  • Mohammad Ali Eslamizade Department of Animal Biotechnology, Faculty of Agriculture Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
  • Najaf Allahyari Fard Department of Systems Biotechnology, Faculty of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
Abstract:

Background: Contraceptive vaccines (CVs) can be used as a valuable and alternative method for the prevention of gestation in humans and animals. These vaccines can have several targets, such as superficial sperm proteins. Vaccines based on sperm antigens are quite efficacious to create a contraceptive effect. However, multi-epitope vaccines are more effective in stimulating the immune system and producing more antibodies to reduce the infertility rate. Materials and Methods: This study aimed to design and evaluate a chimeric fusion protein containing IZUMO, SACA3, and PH-20 epitopes. IZUMO1, SACA3, and PH-20 were assessed, and appropriate regions were selected using various bioinformatics tools, including IEDB, I-TASSER, ProtParam, Asa-View, and Chimera software. Protein epitopes were selected based on various characters, including specificity, solvent accessibility, their weight and length, antigenic intensity, and topology. Epitopes with high antigenic potential were selected and joined together by linkers. The designed fusion protein was simulated using Molecular Dynamic, GROMACS 5, and Chimera 1.14 software. Results: The results demonstrated that all antigenic plots and availability of epitopes in the new construct remained constant. The spermatic antigens were combined using rigid linkers as a new construct and showed a stable formation with proper solvent accessibility validated by ProSA-web and PROCHECK. Also, comparing the new structure with its original one did not show any structural change. Conclusion: Based on bioinformatics results, the fusion protein that consists of three spermatic antigens has productive potential to stimulate the immune system and capable of producing more antibodies in circulation and reliable infertility.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

development and implementation of an optimized control strategy for induction machine in an electric vehicle

in the area of automotive engineering there is a tendency to more electrification of power train. in this work control of an induction machine for the application of electric vehicle is investigated. through the changing operating point of the machine, adapting the rotor magnetization current seems to be useful to increase the machines efficiency. in the literature there are many approaches wh...

15 صفحه اول

In-silico Designing of Immunogenic Construct Based on Peptide Epitopes Using Immuno-informatics Tools Against Tuberculosis

Background and Aim: Mycobacterium tuberculosis is a health problem in countries. Despite the global prevalence of tuberculosis and the lack of appropriate drugs, further progress is still needed with the help of modern methods of preparing epitope-based vaccines for tuberculosis. Materials and Methods: In this study, specific T and B cell epitopes required for producing chimeric vaccines with ...

full text

Structure Evaluation of IroN for Designing a Vaccine against Escherichia Coli, an In Silico Approach

Introduction: Some strains of Escherichia Coli, including intestinal pathogenic strains, commensal strains, and extra intestinal pathogenic E. coli (ExPEC) have a significant impact on human health status. A standard vaccine designed based on conserved epitopes can stimulate a protective immune response against these pathogens. Additionally, enhanced expression at the infection site as a pathog...

full text

Designing of A Multi-epitope Recombinant Protein, Consisting of Several Conserved Epitopes from Hemagglutinin Protein of the H1N1 and H5N1 Strains of Influenza Virus by Immunoinformatics Approaches

Introduction: According to marked advances in bioinformatics studies, development of influenza vaccines has been greatly modified in many studies. In this study, we have designed a multi-epitope recombinant protein, consisting of several conserved epitopes from Hemagglutinin protein of the H1N1 and H5N1 strains of Influenza virus by immunoinformatics approaches. Materials and Methods: The regis...

full text

In silico Analysis of Pasteurella multocida PlpE Protein Epitopes As Novel Subunit Vaccine Candidates

Background: Pasteurella multocida is a Gram-negative, non-motile, non-spore forming, and aerobic/anaerobic cocobacillus known as the causative agent of human and animal diseases. Humans can often be affected by cat scratch or bite, which may lead to soft tissue infections and in rare cases to bacteremia and septicemia. Commercial vaccines against this agent include inactivated, live attenuated,...

full text

Designing a polytopic complex vaccine candidate against Gallibacterium anatis: an In-silico study

The haemolytic biovar of Gallibacterium anatis (G. anatis) is responsible for urogenital, gastrointestinal, and respiratory diseases in chickens. There are numerous reports on the resistance of G. anatis to antibiotics and recurrence of the disease, which raise concerns about antimicrobial treatment efficiency. Vaccination has been considered as the most feasibl...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 2

pages  71- 82

publication date 2020-05

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023